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Abstract. Fronts of weakly exothermal chemical reaction may propagate in solids at very low temperatures
(4 K ≤ T ≤ 77 K) thanks to a quite unusual mechanism, involving a feedback between the heat produced
by the reaction and the disruption of the solid matrix. In this class of phenomena, the reaction may
be induced by mechanical constraints, without a large elevation of temperature. On the basis of a simple
phenomenological model, we investigate ignition of a propagating front by initially (i) disrupting a localized
zone of the solid matrix, or by (ii) introducing a temperature jump, leading to a thermal shock with strong
temperature gradients. In particular, we show that reaction can be initiated by disrupting only a very
small fraction of the sample. Applications to the problem of initiation of solid explosives by friction or
shocks is briefly discussed.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 82.60.Nh Thermodynamics of
nucleation – 82.33.Pt Solid state chemistry

1 Introduction

Classical combustion at usual temperature involves heat
release by exothermal reactions, which accelerates the
chemical transformation due to a strong dependence of
the chemical reaction rate. Typically, the reaction term
has an Arrhenius dependence of the form exp(−Ea/RT )
[1,2]. According to this picture, propagation of combus-
tion fronts should become essentially impossible at very
low temperature when the heat generated by the reaction
is small, since the reaction rates remains always negligi-
bly small. The propagation of waves of chemical reactions
observed in solid phases at very low temperature and for
weakly exothermal reactions is therefore a surprising phe-
nomenon, which can not be explained by standard com-
bustion theory [3]. It turns out that the mechanism mak-
ing propagation possible involves brittle disruption of the
material, which permits a release of energy, which in turns
starts the chemical reaction. While heat is rapidly liber-
ated, the rapid thermal variation induces disruption ahead
of the reaction zone, leading to front propagation.

The description of these phenomena therefore requires
theoretical models incorporating a coupling between the
fields of chemical concentrations or temperature and the
mechanical state of the solid. The main physical idea,
which was used in the models proposed in [3,4] con-
sists in assuming that (i) chemical activation is happen-
ing because of disruption of the solid matrix, and (ii) the
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chemical transformations induce effectively a chemical or
thermal stress, which in turn induces brittle fracture, al-
lowing the reaction to propagate. The model proposed in
[3] assumes that the mechanical state of the system is de-
termined by the temperature field only, by assuming that
stress and temperature gradient are simply related, and
that a temperature gradient exceeding a certain threshold
leads to a rupture and a dispersion of the solid matrix,
which in turn allows the reaction to start. The other model
introduces an explicit coupling between the chemical (or
thermal field) and elastic waves [4]. One of the main phys-
ical assumption is that reaction starts whenever the stress
exceeds a certain threshold. The existence of these two dif-
ferent mechanisms of propagation is strongly suggested by
experimental observations [5]. The models thus proposed
introduce critical stresses or temperature gradients, above
which reaction starts. These parameters play a crucial role
in the chemical reactions at very low temperature we are
considering here.

It is tempting to draw an analogy between the purely
thermal mode of propagation in cryo-chemistry [3] and
the “slow, classical combustion regime”, and between the
mode involving gasless, supersonic elastic waves [4] and
the “detonation regime” in gaseous combustion. Yet, the
models predict that propagation in the models of cry-
ochemical reactions exhibits a number of features, which
are very different from what is known in usual combus-
tion. As an example, in the thermal mode, one finds that
the front velocity is essentially independent of the heat
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diffusivity [6]. In the gasless detonation regime, a jump in
stress, not pressure is expected.

In this article, we consider the problem of nucleation,
or ignition, as it is called in combustion theory, of travel-
ling combustion waves in the thermal model. The descrip-
tion of the formation of a combustion/detonation wave is
the simplest genuinely time dependent problem that may
be investigated. This problem is very important both for
conceptual and for practical reasons. Ignition has been
extensively studied in the context of combustion [1], or in
phase transitions [7]. A number of theoretical results have
been obtained for the problem of ignition of propagating
waves in the detonation regime [8]. Here, we present a
theoretical analysis of ignition in low temperature, solid
phase chemistry, in the thermal regime. The remarkable
feature is that combustion waves can be ignited without
injecting heat in the system, contrary to what happens
in usual combustion. We study how ignition takes place
by (i) disruption a small fraction of the sample, and (ii)
introducing a temperature jump of very small amplitude.
Physically, the unusual nature of the ignition problem is
due to the fact that the temperature gradient, not the
temperature itself, controls the chemical transformation.

2 Theoretical model

As explained in the introduction, it is assumed that re-
action can proceed only when the solid matrix becomes
dispersed. In the model proposed in [3], brittle fracture
is postulated to result from a thermal shock: a tempera-
ture gradient larger than a critical value, (∂xT )c, induces a
disruption of the matrix, and chemical reaction may start,
therefore leading to heat release for a time τ . The model
reads:

∂tT = D∂2
xT +Q (1)

Q = 0 as long as |∂xT | < (∂xT )c

= Q0 for a time τ after |∂xT | has reached (∂xT )c.

(2)

This phenomenological model rests on very simplified
assumptions; it cannot be derived at the moment from first
principles. However, the model defined by equations (1,2)
rests on well-established experimental results. A more pre-
cise model must incorporate the fact that solid disruption
is induced when a gradient (of stress, temperature,...) ex-
ceeds a threshold, as described in our model. As such we
expect that the conclusions obtained with our simplified
model will be of broader validity.

In this model, one may determine travelling wave so-
lutions, by solving:

−v∂ξT = D∂2
ξT +Q (3)

with ξ ≡ x−vt. The solution can be easily determined. It is
piecewise exponential. By imposing the proper boundary

Fig. 1. The curve of existence of the propagating waves. So-
lutions exist when the (dimensionless) velocity, U is related to
the (dimensionless) threshold G, defined by equation (5), by
the relation (4), plotted here. For G ≤ 0.64, two branches of
solutions exist. The branch of slow waves (U . 1.121) is not
accessible in numerical experiments.

conditions at ξ → ±∞ one obtains [3]:

G =
(

1− exp(−U2)
)
/U (4)

where:

U = v
( τ
D

)1/2

and G =
(

(∂xT )c

Q0

)(
D

τ

)1/2

. (5)

Two solutions exist when G ≤ Gc ≈ 0.64, see Figure 1.
In the limit G → 0, one solution has a low velocity: v ≈
D(∂xT )c/(Q0τ), and a fast velocity: v ≈ Q0/(∂xT )c.

The analytic study of the time dependent problem is
completed by a numerical integration of the partial dif-
ferential equations (1, 2). A standard centered finite dif-
ference discretisation is used. The time integration is per-
formed with a Crank Nicholson algorithm [9]. To check
the accuracy of the algorithm, we ignited a travelling wave
solution, and compared the wave velocity with the exact
result equation (4). Because of the intrinsically discontin-
uous nature of the model, the velocity of the front con-
verges more slowly to its exact value than ∆t2 (we find a
convergence in ∆tx, x . 1).

We conclude this section by noting that the slow mode
of propagation has never been observed in our numerical
experiments. Even when a wave very close to the analytic
solution corresponding to the slow mode is initiated, the
fast wave quickly takes over. This observation is at odds
with the appearance in laboratory experiments of a long
transient, where the slow wave could be observed before
the fast wave took over [3]. The understanding of this
discrepancy will require a detailed investigation of the in-
stability of the slow wave, a problem we will not address
here (the stability of the fast mode of propagation has
been established in [10]). In the following, we refer only to
the fast mode of propagation.
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3 Cold ignition by brittle fracture

Brittle fracture plays a crucial role, both in the ignition
and in the propagation of fronts of chemical reactions in
solid phases at very low temperature. The ignition of re-
actions in these circumstances may start without any sig-
nificant input of heat. This situation should be contrasted
with the equivalent problem in combustion, in usual con-
ditions, where a large amount of heat must be provided
to start the reaction.

To illustrate this point, we first consider the effect of a
localized brittle destruction, modelled by turning on the
heat production term Q, at time t = 0 in the zone of
destruction. With this initial condition, we demonstrate
that a wave may start if the size of the fractured region,
∆, is larger than a critical size ∆c. We now proceed to
analyse this problem.

3.1 Ignition by a brittle fractured zone
in one-dimension

To understand the generation of waves when a localized
fractured region is introduced at t = 0, we notice that
the reaction will generate heat (Q 6= 0 for a time τ after
the material has been fractured). As a result of this local-
ized (inhomogeneous) heat release, a flux is created, hence
the temperature derivative becomes non zero. When the
heat released, equal to the product of Q by the size of
the fractured region, is large enough, then the tempera-
ture gradient may reach the critical value, (∂xT )c, and a
chemical wave may start.

The qualitative argument above may be made more
rigorous by using the explicit solution of the heat equation
with a source term in d = 1 space dimension:

T (x, t) =
∫ t

0

dt′

(4πD(t− t′))1/2

×
∫ ∆/2

−∆/2
Q(x′, t′) exp

(
− (x− x′)2

4D(t− t′)

)
dx′. (6)

The localized character of the source term is explicitly
taken into account in the equation above. The fact that the
highest value of the heat flux is reached at the boundary
of the fractured zone is physically reasonable, and can
be justified by a precise analysis. As long as the threshold
value (∂xT )c has not been reached before, the temperature
derivative at x = ∆/2 is simply:

∂xT (∆/2, t) = −Q0

∫ t

0

dt′√
4πDt′

(
1− exp(− ∆2

4Dt′
)
)
.

(7)

This integral can be reduced, after the change of variables
t′ = θ∆2/4D , to:

∂xT (∆/2, t) = − Q0∆√
16πD

∫ 4Dt/∆2

0

dθ√
θ

(
1− exp(−1

θ
)
)
.

(8)

Fig. 2. The evolution of temperature (full line) and of the
temperature derivative (dashed line) after a brittle fracture
has been initiated at time t = 0, in a region of size ∆. The
evolution for t ≤ τ is shown. The maximum value of |∂xT | is
reached at the boundary of the fractured region (marked by
the vertical dashed line). A wave starts when the maximum of
|∂xT | reaches (∂xT )c after a time τ . The parameters used in
the simulation are D = 1, Q0 = 1, τ = 1. The time step is
2.5× 10−3, the lattice spacing is 5× 10−3.

The integral above converges when its upper bound goes
to infinity:

∫∞
0 dθ/

√
θ(1 − exp(−1/θ)) = 2

√
π. It follows

that for small values of ∆, ∂xT (∆/2, τ) ≈ Q0∆/(2D),
provided τ � ∆2/(4D). As expected, the absolute
value of the temperature derivative ∂xT (∆/2, t) is a
monotonically increasing function of ∆ (the larger the
region where heat is released, the higher the flux). For
a given value of (∂xT )c, there exists a critical value ∆c

defined implicitly by:

(∂xT )c =
Q0∆c√
16πD

∫ 4Dτ/∆2
c

0

dθ√
θ

(
1− exp(−1

θ
)
)

(9)

such that for ∆ < ∆c, the critical value (∂xT )c is not
reached while the Q term is on, and for ∆ > ∆c, the
critical value (∂xT )c is reached at a time t < τ . In the
former case, the solution will relax for t > τ towards
the value at x→∞, and propagation of a wave does not
start. In the other case (∆ > ∆c), the source term gets
turned on for t > τ in the initially unfractured region, re-
sulting in a propagating wave. Provided ∆c/(Dτ)1/2 � 1,
equation (9) reduces to:

∆c ≈ 2
(∂xT )c

Q0
D = 2(Dτ)1/2G (10)

whereG was defined in equation (5). Equation (9) predicts
that ignition by a brittle fractured zone becomes impossi-
ble when G ≥ 1/

√
π ≈ 0.564 (the critical length becomes

infinite).
The predictions for the critical size have been tested

numerically in the small G regime. We explicitly checked
that the maximum derivative is located at the edge of the
fractured zone, see Figure 2. The value of ∆ necessary to



74 The European Physical Journal B

Fig. 3. Dependence of the critical size of the fractured zone
necessary to ignite a wave, ∆c, as a function of (∂xT )c, in 1-
dimension. For small G, the curve is well represented by the
prediction equation (5) (dashed line). The physical parameters
in this figure are τ = 1, Q0 = 1 and D = 1.

start propagation is plotted in Figure 3 as a function of
(∂xT )c, or equivalently, G (since all the other parameters
are set to 1: Q0 = 1, D = 1, τ = 1). A linear dependence
of ∆ as a function of G is observed for small values of
G, in complete agreement with the analysis above. The
numerical errors become large for G . 0.4. Since, as we
will explain in Section 3.3, the experiments we are aware
of correspond to small values of G, our numerical study
covers the physically important range of parameters.

3.2 Ignition by a brittle fractured zone in higher
dimension

In this subsection, we consider the problem of ignition
by a brittle fractured zone in higher space dimension. In
practice, the case d = 2 is appropriate for thin films of
frozen reagents, whereas the case d = 3 applies for wave
ignition in three-dimensional ampoules.

Technically, the calculation of the previous subsection
may be extended in d = 2 dimensions: starting at t = 0
from a disk of diameter ∆, where a fracture is applied, one
may compute the normal derivative on the circle of radius
∆/2 at time t as:

∂nT (∆/2, t) =
Q0∆

2πD

∫ 2π

0

dθ
∫ 1/2

0

zdz

× (1/2− z cos θ)
(1/4 + z2 − z cos θ)

exp
(
− ∆2

4Dt
(1/4 + z2 − z cos θ)

)
.

(11)

Fig. 4. Dependence of the critical size of the fractured zone
necessary to ignite a wave, ∆c, as a function of (∂xT )c, in
2-dimension (a), and in 3-dimensions (b). The curve is well
represented by the prediction equation (14). The dashed line
shows the prediction equation (14). The physical parameters
in this figure are τ = 1, Q0 = 1 and D = 1.

In the limit ∆2/(4Dt)� 1, the expression above reduces
to:

∂nT (r = ∆/2, t) =
Q0∆

4D
(12)

leading to the following estimate for the critical nucleus:

∆c =
4D(∂xT )c

Q0
= 4(Dτ)1/2G. (13)

This can be explicitly checked numerically. The criti-
cal radius, computed in 2-dimensions as a function of G
is shown in Figure 4a The condition ∆2/(4Dt) � 1 is
satisfied for small values of G; in this regime, the relation
equation (13) is well satisfied.
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In fact, the critical radius may be computed in any
dimension in the ∆2/(4Dt)� 1 limit. One finds:

∆c =
2dD(∂xT )c

Q0
= 2d(Dτ)1/2G. (14)

This result can be justified by simply integrating equa-
tion (1) over the sphere of radius ∆/2:

d
dt

∫
Tddx = QVold(∆/2)−DAread(∆/2)(∂nT ) (15)

where Vold(∆/2) and Aread(∆/2) are respectively the
volume and the area if the sphere of radius ∆/2 in
d-dimensions. The two quantities are related by:

Vold(R) =
∫ R

0

Aread(R′)dR′

= Aread(1)
∫ R

0

R′d−1dR′ =
RAread(R)

d
· (16)

In the limit ∆2/4Dτ � 1, as we will justify, the left hand
side of equation (15) is negligible compared to any of the
two terms on the right hand side. This can be seen by using
the Green’s function representation of the temperature
generated by a heat source term, Q, localized in a sphere
of radius ∆/2, to obtain:

d
dt

∫
ddxT (x, t) =

t−d/2

(4πD)d/2

∫
|x|<∆/2

dx
∫
|x′|<∆/2

dx′

× exp
(
− (x− x′)2

4πDt

)
≈ 1

(4πDt)d/2

(
∆

2

)2d

Q. (17)

This term is effectively smaller than Q V old(∆/2) pro-
vided ∆2/Dt� 1. Equation (15) thus implies that

∂nT (∆/2) =
∆Q

2dD
(18)

which in turn leads to equation (14).
This result has been checked numerically. Figure 4b

shows the dependence of the critical radius on the the di-
mensionless combination G. As it was the case in 1 and 2
dimensions, in the small ∆/(Dτ)1/2 limit, or equivalently,
in the small G limit, the linear relation (14) is well satis-
fied.

The conclusion from this section is that the critical size
of the fractured zone leading to wave nucleation increases
essentially linearly with space dimension. Qualitatively,
this effect results from the dependence of the heat loss
term across a sphere as a function of the space dimension:
as d increases, the heat losses across the sphere become
more important. As a consequence, a larger amount of
injected heat, hence a larger critical size, is required to
ignite wave propagation.

3.3 Physical estimates

The available experimental data allow us to estimate the
value of ∆c in real systems. In the case of the chlorination
of butylchloride, in liquid nitrogen (T ≈ 77 K), τ ≈ 0.1 s,
Q0τ ≈ 60 K, and (∂xT )c ≈ 300 K/cm [3,5]. The heat
diffusivity D is of the order D ≈ 10−2 cm2/s (or less), so
G ≈ 0.15, and ∆c ≈ 5×10−3 cm. Effectively, in the exper-
iments, the critical length is very small. We thus obtain
the physically very important result: in order to initiate
propagation of a travelling wave of cryochemical transfor-
mation, it is enough to rupture locally a very small piece of
the solid matrix of reagents, of size of the order of 10 µm.
Preliminary experimental results do show that a scratch
by a thin needle is enough to initiate wave propagation of
cryochemical waves [11]. It would be interesting to mea-
sure systematically the critical size of the fracture zone as
a function of the other parameters in the system. We note
that this result is very suggestive of what may happen in
the (plausibly) related problem of initiation of explosion
in solid explosive by shock or friction.

4 Ignition by a temperature jump

We consider a temperature step: T = δT for x ≤ 0 and
T = 0 for x > 0. Right at the step location, very large
temperature gradients induce brittle fracture, and if the
temperature jump is high enough, we demonstrate that a
wave may start propagating. Importantly, the critical tem-
perature jump can be very small: in the limit (∂xT )c → 0,
the critical temperature jump goes to zero, and as such, is
much smaller than the temperature jump in a stationary
travelling wave front.

In many combustion problems, a large temperature
perturbation is needed to ignite a reaction. For the type
of cryo-chemical reactions considered here, we show that
a temperature step of very small amplitude (much smaller
than the adiabatic temperature of the reacted medium
after combustion) is enough to ignite a propagating wave.

A temperature jump leads to a very strong tempera-
ture gradient, therefore generating a region with brittle
destruction. The sharp temperature jump should be re-
garded here as a model for the ignition of propagation by
a strong temperature gradient, as it was indeed done in
experiments. Intuitively, one expects that the higher the
amplitude of the jump, the larger the fractured region. As
we have seen in the previous subsection, when the size of
the domain with brittle destruction is large enough, prop-
agation of waves may start. Ignition is therefore expected
to take place when the temperature jump is larger than a
certain threshold, δT . In this subsection, an analytic esti-
mate of the critical temperature jump is provided, as well
as a numerical determination.

With a temperature jump as an initial condition, the
temperature derivative at t = 0 a δ-function: ∂xT (x, t =
0) = (δT )δ(x − 0). The temperature derivative evolves
according to:

∂t(∂xT ) = D∂2
x(∂xT ) + ∂xQ (19)
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which again has the explicit solution:

∂xT (x, t) = − (δT )√
4πDt

exp
(
− x2

4Dt

)
−
∫ t

0

dt′

(4
√
π(D(t− t′))3/2)

∫ ∆/2

−∆/2
Q(x′, t′)(x− x′)

× exp
(
−(x− x′)2

4D(t− t′)

)
dx′. (20)

The evolution of the sharply peaked temperature
gradient profile is very fast. In a time of order

1
4πD (δT/(∂xT )c)2, the temperature derivative is every-
where less than (∂xT )c. When (∂xT )c → 0, this time is
much shorter than τ , the time where the source term Q
acts. This statement has been checked numerically. We
therefore separate the evolution into a first phase, where
the infinitely peaked temperature derivative decreases to
values less than (∂xT )c, followed by a second phase where
the temperature gradient builds up, due to the source term
Q. This second phase is very similar to the problem al-
ready considered in the previous subsection.

To describe the first phase, we therefore neglect the
second term on the right-hand-side of equation (20). The
solution reaches |∂xT | = (∂xT )c at values of x, defined by:

x2 = 4Dt
(

ln
δT

(∂xT )c
− 1

2
ln 4πDt

)
. (21)

At t ≥ 1
4πD ( δT

(∂xT )c
)2, the solution is everywhere less than

the (∂xT )c, so equation (21) does not have physical solu-
tions. The maximum value of |x|, solution of equation (21)
is:

xm =
1

(2πe)1/2

(
δT

(∂xT )c

)
. (22)

It is reached at time t = 1
4πeD ( δT

(∂xT )c
)2. Effectively a re-

gion of size w = 2xm undergoes brittle destruction. The
subsequent evolution can be described by the consider-
ations of the previous subsection: provided the width is
larger than a critical width, of order 2D(∂xT )c/Q0 when
(∂xT )c is small enough, a wave is initiated, otherwise, the
excited region cannot start a new wave. This leads to a
critical temperature jump:

δTc =
(πe

2

)1/2

(∂xT )2
c

(
Q0

D

)
. (23)

The numerical problem turns out to be difficult, since one
has to follow a solution with a singular initial condition,
evolving over a very fast time scale. A precise numerical
solution therefore requires very small time steps, and a
very fine mesh. Our numerical results were always some-
what sensitive to the time/space discretisation. By com-
paring various discretisations, we estimate the error bars
on the numerical results presented here to be less than
∼ 10%.

The numerical results for the critical value of the tem-
perature jump, δTc as a function of the (∂xT )c is shown

Fig. 5. Dependence of the critical amplitude of a temperature
jump, δT to start wave propagation (solid line). The numeri-
cally determined values of δTc are in good agreement with the
prediction of equation (23) when (∂xT )c → 0 (dashed line).
The physical parameters in this figure are τ = 1, Q0 = 1 and
D = 1.

in Figure 5. The data is completely consistent with the
quadratic behavior in equation (23); the numerical pref-
actor determined is very close to the value (πe2 )1/2.

5 Conclusions

In this article, we have considered the problem of ignition
in a model introduced earlier to describe front propaga-
tion in weakly exothermal cryochemistry in solid phases.
Our results provide an explanation for a number of ex-
perimental phenomena, described in [3]. We emphasize,
in particular, the following facts:
i) Waves of chemical transformation can be excited with-

out heating, and only by local disruption (as achieved
experimentally by turning of a metal bar frozen in the
sample). Remarkably, we find with realistic parame-
ters that the critical size is very small, of the order of
∼ 10 µm.

ii) Waves are ignited as a result of a rapid variation of
temperature (in experiments a pulse of electric dis-
charge emitted with a microheater frozen in the sam-
ple), or equivalently by large temperature gradients.
On the contrary, a very slow temperature variation or
small temperature gradient does not lead to ignition.
The estimates for the critical size, presented in Sec-

tion 3.3, lead to very small values. This may be related to
the well known very large sensitivity of crystalline explo-
sives to friction and shocks. So far, models based on ther-
mal considerations have failed to provide an explanation
for this important observation. Our approach suggests a
new way to address the problem. Some experimental evi-
dence that this hypothesis is correct can be found in the
work [14] on the dynamics of decay of heavy metals azides.
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The importance of the problem of ignition by a me-
chanical perturbation extends far beyond the specific
problem of cryochemistry we have considered in this arti-
cle. Our result on cold ignition may be used in a number of
contexts, such as geotectonic phenomena (it has been re-
cently proposed that phase transition coupled to mechani-
cal perturbations may be important in understanding geo-
tectonic phenomena, involved in earthquakes dynamics
[12]), as well as to the catastrophic decay of metastable
phases in solids [13].

Obviously, the possible applications of the presented
results are only hypothetical schemes. They call for more
experimental and theoretical investigations.

The support of NATO under contract SfP.97 1897 is gratefully
acknowledged.
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